An inverse spectral theorem for a Hill's matrix
نویسندگان
چکیده
منابع مشابه
An Inverse Spectral Theorem
We prove a substantial extension of an inverse spectral theorem of Ambarzumyan, and show that it can be applied to arbitrary compact Riemannian manifolds, compact quantum graphs and finite combinatorial graphs, subject to the imposition of Neumann (or Kirchhoff) boundary conditions.
متن کاملA Uniqueness Theorem of the Solution of an Inverse Spectral Problem
This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.
متن کاملa uniqueness theorem of the solution of an inverse spectral problem
this paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. it is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.
متن کاملA local inverse spectral theorem for Hamiltonian systems
We consider 2×2–Hamiltonian systems of the form y′(t) = zJH(t)y(t), t ∈ [s−, s+). If a system of this form is in the limit point case, an analytic function is associated with it, namely its Titchmarsh–Weyl coefficient qH . The (global) uniqueness theorem due to L. de Branges says that the Hamiltonian H is (up to reparameterization) uniquely determined by the function qH . In the present paper w...
متن کاملA note on spectral mapping theorem
This paper aims to present the well-known spectral mapping theorem for multi-variable functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1984
ISSN: 0024-3795
DOI: 10.1016/0024-3795(84)90173-3